
Week 10 - Monday

 What did we talk about last time?
 Work day
 Before that:
 Tuples
 The list() function
 Customized sorting
 Cracking the substitution cipher

 We've already talked about Python tools to search for a string
in another string

 The find() method will search for a string inside a string
and return the index where it starts (or -1 if it can't be found)

word = 'dysfunctional'
location1 = word.find('fun') # location1 is 3
location2 = word.find('games') # location2 is -1

 Maybe you want to search for text that:
 Ends with "tion"
 Starts with either "Password:" or "password:"
 Has exactly five digits, like a zip code
 Has a number followed by words like "street", "road", "avenue",

"boulevard", "court", "way", or a few other possibilities
 The tool you want is called regular expressions
 Regular expressions can also be used to verify the formatting

of data entered into websites

 Regular expressions (sometimes shortened to regexes) are a
way of describing a pattern of characters

 They have their roots in the 1950s as an important idea in
theoretical computer science

 In the 1980s, the programming language Perl introduced a
syntax for describing regular expressions

 Many languages, including Python, have adopted syntax that
is identical or similar to the Perl syntax

 In Python, regular expressions are written as strings, using symbols that have special meanings

Symbols Meaning Example Explanation
[] Set of characters '[m-z]' Letters m through z
\ Special sequence '\d' Numerical digits
. Any character (except newline) 'cr.p' 'crap', 'crip', 'cr8p', etc.

^ Starts with '^the' Line starts with 'the'

$ Ends with 'dog$' Line ends with 'dog'

* Zero or more occurrences 'hi*' 'h', 'hi', 'hii', 'hiii', etc.

+ One or more occurrences 'hi+' 'hi', 'hii', 'hiii', etc.

? Zero or one occurrences 'team?' 'tea' or 'team'

{} The specified occurrences 'he.{2}o' 'hello', 'helpo', 'hemno', etc.

| Either/or 'gray|grey' 'gray' or 'grey'

 Because there are certain sets of characters used a lot, there
are special sequences for those

Sequence Meaning
\d Numerical digit (0-9)
\D Not a numerical digit
\s White space (space, tab, etc.)
\S Not white space
\w Alphanumeric (A-Z, a-z, 0-9, and underscore)
\W Not alphanumeric

 Sets of characters are used a lot
 There are special rules inside the brackets

Set Example Meaning
[amp] Either a, m, or p
[a-n] Any lowercase character in the range from a to n
[^amp] Any character except a, m, or p
[0-9] Any digit 0-9
[a-zA-Z] Any lowercase or uppercase letter

[+] The character +, since most special characters have no special
meaning inside sets

 Write a regular expression that will match an e-mail address:
 Numbers or letters
 Followed by an @ sign
 Followed by numbers or letters
 Followed by a dot
 Followed by dots or numbers or letters

 Write a regular expression that will match a date in this
format:

12/03/2021

 Can you extend it so that the months and the days can be
either one digit or two digits?

 Write a regular expression that will match a phone number in
this format:

(404) 555-6789

 Extend it so that it can accept this format as well:

404-555-6789

 Both regular expressions and Python strings use backslash (\) to
mean special things

 For this reason, it's common to use raw strings in Python when
specifying a regular expression

 Raw strings start with r (before the quotes) and don't treat
backslashes as special characters

 Raw strings are still normal strings, they just let you type things in
differently

word1 = '\n' # contains newline
word2 = '\\n' # contains \n (two characters)
word3 = r'\n' # contains \n (two characters)

 Once you have a string that represents a regular expression,
how can you use it?

 First, import re
 The re module has a number of functions, but three will be

useful for us:

Function Description
findall() Return a list of all the strings that match
split() Split a string into a list separated by places that match
sub() Replace matches with a string

import re

text = 'we are the wombat combat warriors'
get all words that start with w
wWords = re.findall(r'w[a-z]*', text)
Gets: ['we', 'wombat', 'warriors']

split up the string by words that start with w
noWWords = re.split(r'w[a-z]*', text)
Gets: ['', ' are the ', ' combat ', '']

replace every word that starts with w with goat
newText = re.sub(r'w[a-z]*', 'goat', text)
Gets: 'goat are the goat combat goat'

 This function:
 Opens filename
 Reads everything into a single string and makes it lowercase
 Then, it returns a list of words
 Words are either a sequence of lowercase letters with a single apostrophe

or hyphen or they're simply a sequence of lowercase letters

def parseFile(filename):
import re
with open(filename, 'r') as file:

text = file.read().lower()
return re.findall("[a-z]+['-]?[a-z]+|[a-z]+", text)

 Regular expressions can't count
 Regular expressions can't make sure that matching separators

(like left and right parentheses, left and right braces, left and
right brackets) match up and are legally nested

 Some patterns that are simple to say have very long regular
expressions

 Review for Exam 2 on Wednesday
 Work time on Friday

 Review chapters 5, 6, 7, and 8
 Work on Assignment 7

	COMP 1800
	Last time
	Questions?
	Assignment 7
	Regular Expressions
	Searching for text
	What if you wanted to do partial matches?
	Regular expressions
	Regular expression syntax
	Special sequences
	Set syntax
	Example: E-mail addresses
	Example: Dates
	Example: Phone numbers
	Raw strings
	Python functions for regular expressions
	Regular expression examples
	Explanation of the regex in Assignment 7
	Limitations of regular expressions
	Upcoming
	Next time…
	Reminders

