
Week 10 - Monday

 What did we talk about last time?
 Work day
 Before that:
 Tuples
 The list() function
 Customized sorting
 Cracking the substitution cipher

 We've already talked about Python tools to search for a string
in another string

 The find() method will search for a string inside a string
and return the index where it starts (or -1 if it can't be found)

word = 'dysfunctional'
location1 = word.find('fun') # location1 is 3
location2 = word.find('games') # location2 is -1

 Maybe you want to search for text that:
 Ends with "tion"
 Starts with either "Password:" or "password:"
 Has exactly five digits, like a zip code
 Has a number followed by words like "street", "road", "avenue",

"boulevard", "court", "way", or a few other possibilities
 The tool you want is called regular expressions
 Regular expressions can also be used to verify the formatting

of data entered into websites

 Regular expressions (sometimes shortened to regexes) are a
way of describing a pattern of characters

 They have their roots in the 1950s as an important idea in
theoretical computer science

 In the 1980s, the programming language Perl introduced a
syntax for describing regular expressions

 Many languages, including Python, have adopted syntax that
is identical or similar to the Perl syntax

 In Python, regular expressions are written as strings, using symbols that have special meanings

Symbols Meaning Example Explanation
[] Set of characters '[m-z]' Letters m through z
\ Special sequence '\d' Numerical digits
. Any character (except newline) 'cr.p' 'crap', 'crip', 'cr8p', etc.

^ Starts with '^the' Line starts with 'the'

$ Ends with 'dog$' Line ends with 'dog'

* Zero or more occurrences 'hi*' 'h', 'hi', 'hii', 'hiii', etc.

+ One or more occurrences 'hi+' 'hi', 'hii', 'hiii', etc.

? Zero or one occurrences 'team?' 'tea' or 'team'

{} The specified occurrences 'he.{2}o' 'hello', 'helpo', 'hemno', etc.

| Either/or 'gray|grey' 'gray' or 'grey'

 Because there are certain sets of characters used a lot, there
are special sequences for those

Sequence Meaning
\d Numerical digit (0-9)
\D Not a numerical digit
\s White space (space, tab, etc.)
\S Not white space
\w Alphanumeric (A-Z, a-z, 0-9, and underscore)
\W Not alphanumeric

 Sets of characters are used a lot
 There are special rules inside the brackets

Set Example Meaning
[amp] Either a, m, or p
[a-n] Any lowercase character in the range from a to n
[^amp] Any character except a, m, or p
[0-9] Any digit 0-9
[a-zA-Z] Any lowercase or uppercase letter

[+] The character +, since most special characters have no special
meaning inside sets

 Write a regular expression that will match an e-mail address:
 Numbers or letters
 Followed by an @ sign
 Followed by numbers or letters
 Followed by a dot
 Followed by dots or numbers or letters

 Write a regular expression that will match a date in this
format:

12/03/2021

 Can you extend it so that the months and the days can be
either one digit or two digits?

 Write a regular expression that will match a phone number in
this format:

(404) 555-6789

 Extend it so that it can accept this format as well:

404-555-6789

 Both regular expressions and Python strings use backslash (\) to
mean special things

 For this reason, it's common to use raw strings in Python when
specifying a regular expression

 Raw strings start with r (before the quotes) and don't treat
backslashes as special characters

 Raw strings are still normal strings, they just let you type things in
differently

word1 = '\n' # contains newline
word2 = '\\n' # contains \n (two characters)
word3 = r'\n' # contains \n (two characters)

 Once you have a string that represents a regular expression,
how can you use it?

 First, import re
 The re module has a number of functions, but three will be

useful for us:

Function Description
findall() Return a list of all the strings that match
split() Split a string into a list separated by places that match
sub() Replace matches with a string

import re

text = 'we are the wombat combat warriors'
get all words that start with w
wWords = re.findall(r'w[a-z]*', text)
Gets: ['we', 'wombat', 'warriors']

split up the string by words that start with w
noWWords = re.split(r'w[a-z]*', text)
Gets: ['', ' are the ', ' combat ', '']

replace every word that starts with w with goat
newText = re.sub(r'w[a-z]*', 'goat', text)
Gets: 'goat are the goat combat goat'

 This function:
 Opens filename
 Reads everything into a single string and makes it lowercase
 Then, it returns a list of words
 Words are either a sequence of lowercase letters with a single apostrophe

or hyphen or they're simply a sequence of lowercase letters

def parseFile(filename):
import re
with open(filename, 'r') as file:

text = file.read().lower()
return re.findall("[a-z]+['-]?[a-z]+|[a-z]+", text)

 Regular expressions can't count
 Regular expressions can't make sure that matching separators

(like left and right parentheses, left and right braces, left and
right brackets) match up and are legally nested

 Some patterns that are simple to say have very long regular
expressions

 Review for Exam 2 on Wednesday
 Work time on Friday

 Review chapters 5, 6, 7, and 8
 Work on Assignment 7

	COMP 1800
	Last time
	Questions?
	Assignment 7
	Regular Expressions
	Searching for text
	What if you wanted to do partial matches?
	Regular expressions
	Regular expression syntax
	Special sequences
	Set syntax
	Example: E-mail addresses
	Example: Dates
	Example: Phone numbers
	Raw strings
	Python functions for regular expressions
	Regular expression examples
	Explanation of the regex in Assignment 7
	Limitations of regular expressions
	Upcoming
	Next time…
	Reminders

